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Philosophy of Science 

June, 1994 

DARWIN MEETS THE LOGIC OF DECISION: CORRELATION 
IN EVOLUTIONARY GAME THEORY* 

BRIAN SKYRMStt 

Department of Philosophy 
University of California at Irvine 

The proper treatment of correlation in evolutionary game theory has unex- 
pected connections with recent philosophical discussions of the theory of rational 
decision. The Logic of Decision (Jeffrey 1983) provides the correct framework 
for correlated evolutionary game theory and a variant of "ratifiability" is the 
appropriate generalization of "evolutionarily stable strategy". The resulting the- 
ory unifies the treatment of correlation due to kin, population viscosity, detec- 
tion, signaling, reciprocal altruism, and behavior-dependent contexts. It is shown 
that (1) a strictly dominated strategy may be selected, and (2) under conditions 
of perfect correlation a strictly efficient strategy must be selected. 

1. Introduction. The theory of rational deliberation and the theory of 
evolution both deal with processes which tend to move in the direction 
of a provisional optimum. In both areas, strategic interaction leads to 
complex game theoretic situations where the provisional optimum may 
be a moving target, and where equilibrium considerations must be intro- 
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duced. In both disciplines, theories initially developed under simplifying 
independence assumptions need to be extended to deal with correlation. 
However, these extensions lead in different directions. In this regard, the 
proper treatment of correlation in evolutionary game dynamics has un- 
expected connections with philosophical discussions of the correct theory 
of rational decision. 

The evolutionary game theory of J. Maynard Smith is built on the sim- 
plifying assumption of pairwise encounters between individuals randomly 
selected from the population. But, as biologists well know, such random 
pairing is not the norm in the real world. Nonrandom pairings can and 
do occur in a number of different ways. A truly general version of evo- 
lutionary game theory should provide a framework within which all non- 
random pairings can be accommodated. This simple observation leads to 
striking consequences. Correlation in the evolutionary setting calls for a 
different theory than correlation in the theory of rational choice. 

In The Logic of Decision R. Jeffrey (1983) proposed a novel form of 
decision theory according to which the weights used in calculating ex- 
pected utility of an act are not the unconditional probabilities of states of 
the world but rather the probabilities conditional on the act in question. 
Jeffrey has criticized the results of his theory in certain problematic cases, 
and has proposed a modification based on a new notion of ratifiability. 
In fact the conditional expected utility of The Logic of Decision is a cor- 
rect model for calculating expected fitness in generalized evolutionary 
game theory, and a variant of ratifiability is important for defining the 
appropriate generalization of Maynard Smith's concept of an evolution- 
arily stable strategy. 

Results problematic for the theory as a theory of rational choice make 
perfect sense in the context of population dynamics. Consequently, the 
relevant equilibrium concept for generalized evolutionary game theory 
will differ from either the Nash equilibrium of classical game theory or 
the correlated equilibrium more recently introduced by R. Aumann 
(1974,1987). The case of one-shot prisoner's dilemma is a striking ex- 
ample. Under favorable conditions of correlation, the strategy of coop- 
eration can take over the entire population. The example generalizes in 
ways that (1) show the gulf between correlated evolutionary game theory 
and correlated economic game theory; and (2) show how correlation can 
maximize the average fitness of the population. 

2. "The Logic of Decision". In The Logic of Decision, Jeffrey intro- 
duced a new framework for decision theory, which was meant to modify 
and generalize the classic treatment of Savage (1954). Savage sharply 
distinguishes acts, states of the world and consequences. All utility re- 
sides in consequences. Acts together with states jointly determine con- 
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sequences, so acts can be taken to be functions from states to conse- 
quences. All uncertainty about the consequences of one's acts is carried 
by the states of the world. States are thus the points in the probability 
space associated with the model and acts can be conceived of as random 
variables mapping states to the utilities of the associated consequences. 
The expected utility of an act is then just the expectation of the act so 
considered as a random variable. In the special case of only a finite num- 
ber of states, we can write the expected utility of an act as a probability 
weighted average of the utilities of application of that act to each state: 

SAVAGE: Utility(Act) = Si Probability (Statei) Utility (Act(Statei)). 

Jeffrey allowed for the possibility that the act chosen might influence 
the probability of the states. He makes no formal distinction between acts, 
states and consequences but relies on a Boolean algebra, whose elements 
are to be thought of as propositions. Each proposition has a probability 
and each proposition with positive probability has a utility. In the appli- 
cation of the theory the decision maker can identify a partition of prop- 
ositions that represent the alternative possible acts of her decision prob- 
lem, and a partition representing alternative states of the world. Jeffrey 
takes the expected utility of an act to be a weighted average of the utilities 
of act-state conjunctions, with the weighting of the average being the 
conditional probability of state conditional on act instead of on the un- 
conditional probability used in Savage: 

JEFFREY: Utility(Act) 
= :i Probability [Statei I Act] Utility [Act & Statei]. 

The Jeffrey expected utility makes sense for any element A of the prob- 
ability space relative to any finite partition {Si} whether or not the former 
is intuitively an act and the latter a partition of states. Furthermore, for 
fixed A, the expected utility of A comes out the same when calculated 
relative to any finite partition, thus enabling Jeffrey to dispense with a 
formal distinction between acts and states, and to endow all (non-null) 
elements of the basic probability algebra with an expected utility as well 
as a probability. The expected utility of the whole space is of special 
interest. This is the expected utility of the status quo. When the agent is 
undecided about which act to do, it can be gotten by expecting over the 
expected utilities of the acts in an act partition, so even a state of inde- 
cision is assigned an expected utility: 

JEFFREY UTILITY of the STATUS QUO: USQ 
= Xj Probability (Actj) Utility(Actj). 

However, difficulties arise when Jeffrey's system is interpreted as a 
system for rational decision. The probabilities in question are just the 
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TABLE 2.1 . MAX'S PAYOFFS 

Moritz Cooperates Moritz Defects 

Max Cooperates 0.9 0 
Max Defects 1 0.6 

agent's degrees of belief. But then probabilistic dependence between act 
and state may arise for reasons other than the one that Jeffrey had in 
mind-that the agent takes the act as tending to bring about the state. 
The dependence in degrees of belief might rather reflect that an act is 
evidence for a state obtaining, for instance, because the act and state are 
symptoms of a common cause. This raises the prospect of basing deci- 
sions on spurious correlation. (See Gibbard and Harper 1981; Lewis 1981; 
Nozick 1970; Skyrms 1980, 1984; and Stalnaker 1981.) Prisoner's di- 
lemma with a clone-or a near clone-is a well-known kind of illustra- 
tion of the difficulty (Lewis 1979, Gibbard and Harper 1981). 

Max and Moritz are apprehended by the authorities and are forced to 
play the prisoner's dilemma. (For biographical data see Busch 1865.) 
Each is given the choice to remain silent (=cooperate) or turn state's 
evidence (=defect). We discuss the decision problem from the point of 
view of Max, but Moritz's situation is taken to be symmetrical. Max's 
payoffs depend both on what he does and what Moritz does, and he takes 
his utilities to be as given in table 2.1. Max also believes that he and 
Moritz are much alike and although he is not sure what he will do, he 
thinks he and Moritz are likely to decide the same. His beliefs do not 
make his act probabilistically independent of that of Moritz even though 
we assume that they are sequestered so that one act cannot influence the 
other. We have evidential relevance with causal independence. For def- 
initeness, we assume that Max has the probabilities for joint outcomes 
given in table 2.2. (Thus, for example, Max's probability that he and 
Moritz both cooperate is 0.45, and his conditional probability of Moritz's 
cooperation given that he does is 0.9.) 

If Max applies Savage's theory and takes Moritz's acts as constituting 
his own states, he will take the states as equiprobable and calculate Savage 
expected utility of his cooperating as (0.5) (0.9) = 0.45 and Savage ex- 
pected utility of his defecting as (0.5)(1) + (0.5)(0.6) = 0.8. He will 
maximize Savage expected utility by defecting. This conclusion is in- 
dependent of the probabilities assumed since defection strictly dominates 

TABLE 2.2. MAX'S JOINT PROBABILITIES 

Moritz Cooperates Moritz Defects 

Max Cooperates 0.45 0.05 
Max Defects 0.05 0.45 

506 



DARWIN MEETS THE LOGIC OF DECISION 

cooperation in the pay-off matrix-that is, whatever Moritz does, Max 
is better off defecting. 

But if Max applies Jeffrey expected utility, using conditional proba- 
bilities as weights, he will calculate the Jeffrey expected utility of co- 
operating as (0.9)(0.9) = 0.81 and the Jeffrey expected utility of de- 
fecting as (0.1)(1) + (0.9)(0.6) = 0.64. He will maximize Jeffrey expected 
utility by cooperating. Maximization of Jeffrey expected utility selects a 
strictly dominated act. 

In response to these difficulties, Jeffrey introduced a new concept in 
the second edition of The Logic of Decision: that of ratifiability. (For 
related ideas, see Eells 1982, 1984.) Jeffrey's idea was that during the 
process of deliberation, the probabilities conditional on the acts might not 
stay constant, but instead evolve in such a way that the spurious corre- 
lation was washed out. In other words, it is assumed that at the end of 
deliberation the states will be probabilistically independent of the acts. If 
so, the Jeffrey expected utility will be equal to the Savage expected util- 
ity. Thus, in the previous example expected utility at the end of delib- 
eration would respect dominance and defection would then maximize Jeffrey 
expected utility. 

Consider the probability measure that an agent would have on the brink 
of doing act A, and let UA be the Jeffrey expected utility calculated ac- 
cording to this probability. An act A is said to be ratifiable just in case: 

UA(A) ' UA(B) for all B different from A. 

We will say that it is strictly ratifiable if the inequality is strict: 

UA(A) > UA(B) for all B different from A. 

Jeffrey suggested that a choiceworthy act should be a ratifiable one. (For 
further discussion see Skyrms 1990a,b.) 

The reason for talking about "the brink" is that when the probability 
of an act is equal to one, the probabilities conditional on the alternative 
acts have no natural definition. The idea of ratifiability, so expressed, is 
ambiguous according to how "the brink" is construed. In section 4 we 
specify ratifiability as an inequality holding throughout some neighbor- 
hood of the point at which the probability of the act is equal to one. 

3. Replicator Dynamics and Evolutionarily Stable Strategies. A stan- 
dard model is widely used to model the dynamics of evolutionary games. 
Individuals can have various alternative "strategies" or dispositions to act 
in certain ways in pairwise encounters. These strategies are genetically 
determined. Reproduction is asexual and individuals breed true. Each in- 
dividual engages in one contest per generation, and plays its strategy. 
Payoffs are in terms of evolutionary fitness (expected number of off- 
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spring). The payoff for an individual playing strategy Ai against one play- 
ing strategy Aj is written as U(AiIAj). The population is very large (ef- 
fectively infinite). Individuals are paired at random. 

Let us write p(A,) for the proportion of the population playing strategy 
Ai. This is also the probability that an individual playing Ai is selected in 
a random selection from the population. Then, under the foregoing as- 
sumptions, the expected fitness for an individual playing Ai is determined 
by averaging over all the strategies that Ai may be played against: U(A) 
= -p(Aj) U(Ai,Aj). The average fitness of the population U is calculated 
by averaging over all strategies: U = S,p(A,) U(Ai). If the population is 
large enough, then the expected number of offspring to individuals play- 
ing strategy A,, U(A,), is with high probability close to the actual number 
of offspring. The population is assumed to be large enough that a useful 
approximation can be derived by studying the deterministic map which 
identifies the expected number of offspring to individuals playing a strat- 
egy with the actual number of offspring. (For a careful discussion of this 
reasoning see Boylan 1992.) Under this assumption the proportion of the 
population playing a strategy in the next generation p' is equal to: 

p'(A,) = p(A,) [U(Ai)/U]. 

Considered as a dynamical system with discrete time, the population evolves 
according to the difference equation: 

p'(A,) 
- p(A,) = p(A,) [U(A,) - U]/U. 

If the time between generations is small this may be approximated by a 
continuous dynamical system governed by the differential equation: 

dp(Ai)/dt = p(A,) [U(A,) - U]/U. 

Provided average fitness of the population is positive, the orbits of this 
differential equation on the simplex of population proportions for various 
strategies are the same as those of the simpler differential equation: 

dp(A,)/dt = p(A,) [U(Ai) - U] 

although the velocity along the orbits may differ (see van Damme 1987, 
sec. 9.4).' This latter equation was introduced by Taylor and Jonker (1978). 
It was later studied by Zeeman (1980), Bomze (1986), Hofbauer and 
Sigmund (1988), and Nachbar (1990). Schuster and Sigmund (1983) find 
it at various levels of biological dynamics and call it the replicator dy- 
namics. 

'The equivalence would fail if we considered evolutionary games played between two 
different populations because of differences in the average fitnesses of the two populations. 
The "Battle of the Sexes" game provides an example. See Maynard Smith (1982, appendix 
J) and Hofbauer and Sigmund (1988, part 7). 
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A dynamic equilibrium is a fixed point of the dynamics under consid- 
eration. In the case of discrete time, it is a point x of the state space that 
the dynamics maps onto itself. For continuous time, it is a state x = (xI, 
. .., xi, . .) such that dxi/dt = 0, for all i. An equilibrium x is stable 
if points near to it remain near. More precisely, x is stable if for every 
neighborhood V of x, there is a neighborhood V' of x such that if the 
state y is in V' at time t = 0, it remains in V for all time t > 0. An 
equilibrium x is strongly stable (or asymptotically stable) if nearby points 
tend toward it. That is, to the definition of stability we add the clause 
that the limit as t goes to infinity of y(t) = x. The states of interest are 
vectors of population proportions. We treat these formally as probabili- 
ties. Since these must add to one, the state space is a probability simplex. 
We will say that an equilibrium is globally stable in the replicator dy- 
namics if it is the dynamical limit as time goes to infinity of every point 
in the interior of the state space. 

Taylor and Jonker introduced the replicator dynamics to provide a dy- 
namical foundation for the equilibrium notion-evolutionarily stable 
strategy-introduced informally in Maynard Smith and Price (1973) and 
formally in Maynard Smith and Parker (1976). Informally, if all members 
of the population adopt an evolutionarily stable strategy then no mutant 
can invade. Maynard Smith and Parker propose the following formal re- 
alization of this idea: 

Strategy x is evolutionarily stable just in case U(xlx) > U(ylx) or 
U(xlx) = U(ylx) and U(xly) > U(yly) for all y different from x. Equiv- 
alently, x is evolutionarily stable if 

1. U(xlx) > U(ylx); and 

2. if U(xlx) - U(ylx), then U(xly) > U(yly). 

Maynard Smith and Price's set of strategies included all randomized strat- 
egies that can be made from members of the set. In the Taylor-Jonker 
framework individuals play pure (nonrandom) strategies and the place of 
randomized strategies is taken by mixed or polymorphic states of the pop- 
ulation where different proportions of the population play different pure 
strategies. The mathematics remains the same, but the interpretation 
changes: Mixed states of the population satisfy the definition as evolu- 
tionarily stable states. In this case, the notion of an evolutionarily stable 
state is stronger than that of a strongly stable equilibrium point in the 
replicator dynamics. Taylor and Jonker show that every evolutionarily 
stable state is a strongly stable equilibrium point in the replicator dynam- 
ics but give an example where a mixed state is a strongly stable equilib- 
rium point but not an evolutionarily stable state. 

This dynamics exhibits close connections with individual rational de- 
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cision theory and with the theory of games. Following is a sketch of the 
most important parts of the picture. First, notice that if we think of evo- 
lutionary fitness as utility and population proportion as probability, then 
the formula for expected fitness of an individual playing a strategy is the 
same as that for the Savage expected utility of an act. 

In a two-person, finite, noncooperative, normal form game there are a 
finite number of players and each player has a finite number of possible 
strategies. Each possible combination of strategies determines the payoffs 
for each of the players. (The games are to be thought of as noncooper- 
ative. No communication or precommitment occurs before the players 
make their choices.) A specification of the number of strategies for each 
of the two players and the pay-off function determines the game. A Nash 
equilibrium of the game is a strategy combination such that no player 
does better on any unilateral deviation. We extend players' possible acts 
to include randomized choices at specified probabilities over the origi- 
nally available acts. The new randomized acts are called mixed strategies, 
and the original acts are called pure strategies. The payoffs for mixed 
strategies are defined as their expected values using the probabilities in 
the mixed acts to define the expectation. We will assume that mixed acts 
are always available. Then every finite, noncooperative, normal form game 
has a Nash equilibrium. 

For any evolutionary game given by a fitness matrix, there is a cor- 
responding symmetric two-person noncooperative game. (It is symmetric 
because the payoff for one strategy played against another is the same if 
row plays the first and column plays the second, or conversely. The iden- 
tity of the players does not matter.) If x is an evolutionarily stable state, 
then (x,x) is-by condition 1 above-a symmetric Nash equilibrium of 
that two-person noncooperative game. Condition 2 adds a stability re- 
quirement. If (x,x) is a Nash equilibrium of the two-person game, then 
x is a dynamic equilibrium of the replicator dynamics, but not conversely. 
If x is a stable dynamic equilibrium of the replicator dynamics, then (x,x) 
is a Nash equilibrium of the two-person game, but not conversely. (For 
details and proofs see van Damme 1987.) 

The foregoing model motivating the replicator dynamics relies on many 
simplifying assumptions and idealizations which might profitably be 
questioned. Here, however, we focus on the assumption of random pair- 
ing. There is no mechanism for random pairing in nature and ample rea- 
son to believe that pairing is often not random (Hamilton 1964). Random 
pairing provides a certain mathematical simplicity and striking connec- 
tions with the Nash equilibrium concept of the von Neumann and 
Morgenster (1947) theory of games, but a theory which accommodates 
all kinds of nonrandom pairing would be more adequate for realistic models. 
How should we formulate such a general theory? 
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4. Darwin Meets The Logic of Decision. Let us retain the model of the 
previous section with the single modification that pairing is not random. 
Nonrandom pairing might occur because individuals using the same strat- 
egies tend to live together, or because individuals using different strate- 
gies present some sensory cue that affects pairing, or for other reasons. 
We want a framework general enough to accommodate all kinds of non- 
random pairing. 

The characterization of a state of the biological system, then, must 
specify conditional proportions p(AjlAi) consistent with the population 
proportions-which give the proportion of individuals using strategy Ai 
which will interact with individuals using strategy Aj. Now the expected 
fitness for an individual playing Ai is derived by averaging over all the 
strategies that Ai may be played against, using the conditional proportions 
rather than the unconditional proportions as weights of the average: U(Ai) 

= p(AjlAi) U(AIAj). Formally, this is Jeffrey's move from Savage to 
Jeffrey expected utility. 

The average fitness of the population is determined by averaging over 
the strategies using the proportions of the population playing them as 
weights: U = 2p(Ai) U(Ai). This is the Jeffrey expected utility of the 
status quo. The replicator dynamics then goes exactly as before with the 
proviso that utility be read as Jeffrey expected utility calculated according 
to the conditional pairing proportions. 

The dynamics are complicated if the conditional pairing proportions 
are subject to dynamical evolution. This will often be the case in realistic 
models, and in certain cases may be forced upon us by the requirement 
that the pairing proportions be consistent with the population proportions. 
To take an extreme case, suppose that two strategies are initially repre- 
sented in equal proportions in the population and suppose each strategy 
strongly tends to pair with the other. If the fitnesses are such that strategy 
one flourishes and strategy two is driven toward extinction, the strong 
anticorrelation cannot be maintained because not enough strategy-two in- 
dividuals are available to pair with all the strategy-one players at a given 
time. No such consistency problems occur in maintaining strong positive 
correlations between strategies in two-strategy games. In the case just 
described each strategy could almost always be paired with itself. How- 
ever, the specific biological motivation for correlation could easily mo- 
tivate a dynamical evolution of the conditional pairing proportions in this 
case as well. 

What are the relevant notions of equilibrium and stable equilibrium for 
pure strategies in correlated evolutionary game theory? Every pure strat- 
egy is a dynamical equilibrium in the replicator dynamics because its 
potential competitors have zero population proportion. Maynard Smith 
introduced the nontrivial equilibrium concept of evolutionarily stable 
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strategy into evolutionary game theory. A strategy is evolutionarily stable 
if, for all potential competitors, either it does better against itself than the 
competitor or it does better against the competitor than the competitor 
does against itself. But the notion is relevant only in the context of the 
random pairing assumption. It does not take correlation into account. Where 
we have correlation, being an evolutionarily stable strategy in Maynard 
Smith's sense is neither necessary nor sufficient for being a dynamically 
stable equilibrium (as will be shown by example). We want a stability 
concept that gives correlation due weight, and that applies in the general 
case when the conditional pairing proportions are not fixed during the 
dynamical evolution of the population. For such a notion we return to 
Jeffrey's concept of ratifiability. 

Transposing Jeffrey's idea to this context, a pure strategy is ratifiable 
if it maximizes expected fitness when it is on the brink of fixation. (The 
population is at a state of fixation of strategy A when 100 percent of the 
population uses strategy A.) This means that in some neighborhood of 
the state of fixation of the strategy, the strategy maximizes expected util- 
ity in that state (where the state of the system is specified in the model 
so as to determine both the population proportions and the conditional 
pairing proportions). 

Let us focus on models where the conditional pairing proportions are 
functions of the population proportions, so that the population proportions 
specify the state of the system and the replicator dynamics specifies a 
complete dynamics for the system. Since we are interested in strong sta- 
bility, the natural concept to consider is that of strict ratifiability. Let x 
be vector of population proportions specifying the state of the system; let 
a be the state of the system which gives pure strategy A probability one; 
let Ux(B) be the expected fitness of B when the system is in state x, and 
U, be the average fitness of the population in state x. Then a pure strategy 
A is strictly ratifiable if for all pure strategies B different from A: 

U(A) > U,(B) 

for all x # a in some neighborhood of a (the point of fixation of A). 
There is, however, reason to explore a weaker variation on the general 

theme of ratifiability. Here we ask only that the expected fitness of A is 
higher than that of the average fitness of the population throughout a 
neighborhood of the point of fixation of A. What is required to hold 
throughout the neighborhood is not that A is optimal but only that A is 
adaptive, that A is better than the status quo. I will call this concept adap- 
tive ratifiability. A pure strategy A is adaptive-ratifiable if: 

U,(A) > Ux 

for all x 7 a in some neighborhood of a (the point of fixation of A). 
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TABLE 4. 1. 

Strategy 1 Strategy 2 Strategy 3 

Strategy 1 3 3 3 
Strategy 2 3 0 4 
Strategy 3 3 4 0 

Obviously strict ratifiability entails adaptive ratifiability since the av- 
erage population fitness Ux is an average of the fitnesses of the pure strat- 
egies Ux(Bi). For an example that shows that adaptive ratifiability does 
not entail strict ratifiability, consider the fitness matrix in table 4.1 to- 
gether with the assumption of random pairing. Then strategy 1 is not 
strictly ratifiable, because wherever p(S2)/p(S3) > 3, strategy 3 has higher 
fitness than strategy 1, and wherever p(S3)/p(S2) > 3, strategy 2 has 
greater fitness than strategy 1. Strategies 2 and 3 each prosper when rare 
relative to the other, but the rare strategy cannot make so great an impact 
on the average fitness of the population as the other strategy which cannot 
prosper. In fact, the average fitness of the population is at its unique 
maximum at the point of fixation of strategy 1. Strategy 1 is therefore 
adaptive-ratifiable. 

We can extend the concept of adaptive ratifiability from pure strategies 
to mixed states of the population. If p is the vector of population pro- 
portions, then Up = pip(Ai) U(A,) is the average fitness of the population 
in mixed state p. Let x be another vector of population proportions, and 
consider Ux(p) = Xip(Ai) Ux(Ai). This quantity is what the average pop- 
ulation fitness would be if the expected fitness of each pure strategy A 
were determined by vector x but the average fitness were determined by 
vector p. (Alternatively, it could be thought of as the payoff to a mutant 
playing a true mixed strategy p in a population in state x.) 

We can then say that p is an adaptively ratifiable state if: 

UX(p) > Ux, 

for all x 7 p in some neighborhood of p. 
Two facts already known from the analysis of conventional evolution- 

ary game theory show that adaptive ratifiability plays a central role in 
correlated evolutionary game theory. The first is that adaptive ratifiability 
generalizes the evolutionarily stable strategies of Maynard Smith and Price: 

In evolutionary game theory with random pairing, a state is Evolu- 
tionarily Stable if and only if it is Adaptive-Ratifiable. (Van Damme 
1987, theorem 9.2.8) 

The second is that adaptive ratifiability guarantees strong stability in the 
replicator dynamics: 
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If a pure strategy is Adaptive-Ratifiable, then it is an attracting equi- 
librium in the replicator dynamics. (Ibid., theorem 9.4.8) 

On this basis we take adaptive ratifiability to be the natural generalization 
of evolutionarily stable state in correlated evolutionary game theory. Thus 
we see that three characteristic features of Jeffrey's discussion of rational 
decision-Jeffrey expected utility, expected utility of the status quo, and 
ratifiability-play important parts in correlated evolutionary game theory. 

5. Simple Examples. 5.1. Example 1. Suppose that the fitnesses for 
pairwise encounters are given by the pay-off matrix for the prisoner's 
dilemma game played by Max and Moritz. (These are one-shot prisoner's 
dilemma games-not the indefinitely repeated prisoner's dilemma games 
widely discussed in the literature-and defection is the unique evolu- 
tionary stable strategy as defined by Maynard Smith.) Starting from any 
mixed population, the replicator dynamics with random pairing converges 
to a population of 100 percent defectors. Now consider the extreme case 
of prisoner's dilemma with a clone; individuals are paired with like-minded 
individuals with perfect correlation. The conditional proportions are p(C C) 
= p(DID) = 1 and p(CID) = p(DIC) = 0, remaining fixed at these values 
during the evolution of the system. With perfect correlation the expected 
fitness for a cooperator is 0.9 and that of a defector is 0.6. The pure 
strategy of cooperation is strictly ratifiable and therefore adaptive-ratifiable. 
It is a strongly stable equilibrium in the replicator dynamics, and that 
dynamics carries any initial population with some positive proportion of 
cooperators to a population with 100 percent cooperators. Under these 
conditions of correlation, Maynard Smith's definition of evolutionarily 
stable strategy is no longer appropriate. Although defection is an evo- 
lutionarily stable strategy and cooperation is not, cooperation is a dynam- 
ically globally stable equilibrium-that is, its basin of attraction includes 
all of the interior of the state space. This example shows in the simplest 
way how difficulties for Jeffrey expected utility in the theory of rational 
choice become strengths in the context of correlated evolutionary game 
theory. 

5.2. Example 2. Correlation is usually not perfect and the relevant 
conditional probabilities may depend on population proportions. The spe- 
cifics depend on how correlation is supposed to arise. Correlation may 
be established by some sort of sensory detection. For instance, cooper- 
ators and defectors might emit different chemical markers. Suppose cor- 
relation arises as follows. At each moment there is a two-stage process. 
First, individuals are randomly paired from the population. If a cooperator 
detects another cooperator, they interact. If not, no interaction occurs, 
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for we assume here that defectors wish to avoid each other as much as 
cooperators wish to avoid them. Then the members of the population that 
did not pair on the first try randomly pair among themselves; they give 
up on detection and interact with whomever they are paired. We assume 
here that detection accuracy is perfect, so that imperfect correlation among 
cooperators is due entirely to the possibility of initial failure to meet with 
a like-minded individual. (This assumption would obviously be relaxed 
in a more realistic model, as would the assumption that individuals would 
simply give up on detection after just one try.) The conditional proba- 
bilities that arise from this two-stage process then depend on population 
frequencies as follows: 

p(ClC) : p(C) + [{1 - p(C)} p(C) - p(C)2}]/[ - p(C)2]; 

p(DID) = [1 - p(C)]/[1 - p(C)2]. 

Using the payoffs for prisoner's dilemma of section 2, the expected fit- 
nesses (=Jeffrey utilities) are: 

U(C) = 0.9 [p(C) + [{1 - p(C)} {p(C) - p(C)2}]/[1 - p(C)2]]; 

U(D) = 1 - [{0.4 (1 - p(C)}/{l - p(C)2]. 

Figure 5.1 presents the expected fitnesses of cooperation and defection 
as a function of the proportion of cooperators in the population. In a 
population composed of almost all defectors, hardly anyone pairs on the 
first stage and almost all cooperators end up pairing with defectors as do 
almost all defectors. The limiting expected fitnesses as defection goes to 
fixation are just those on the right column of the fitness matrix: U(D) = 
0.6 and U(C) = 0. Defection is strictly ratifiable; a population composed 
entirely of defectors is strongly stable in the replicator dynamics. 

However, defection is not the only strictly ratifiable pure strategy. Co- 
operation qualifies as well. As the population approaches 100 percent 
cooperators, cooperators almost always pair with cooperators at the first 
stage. Defectors random pair with those left at the second stage, but not 
many cooperators are left. The result is that the expected fitness of co- 
operation exceeds that of defection. An unstable mixed equilibrium re- 
sults where the fitness curves cross at p(C) = 0.75. 

This example illustrates a general technique for obtaining correlated 
pairing by superimposing a "filter" on a random-pairing model. It also 
shows that nothing is especially pathological about multiple strictly ra- 
tifiable strategies in evolutionary game theory. 

5.3. Example 3. For an example of a game with no adaptively rati- 
fiable pure strategies in essentially the same framework, consider the fit- 
ness matrix in table 5.1 and the same model of frequency dependent cor- 
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relation except that individuals try to pair with individuals of the other 
type at the first stage of the pairing process. Here strategy 1 does better 
in a population composed mostly of individuals following strategy 2 and 
strategy 2 does better in a population composed of individuals following 
mostly strategy 1. The replicator dynamics carries the system to a stable 
state where half the population plays strategy 1 and half plays strategy 
2. This is the same polymorphism that one would get in the absence of 
correlation, but here both strategies derive a greater payoff in the cor- 
related polymorphic equilibrium [U(S1) = U(S2) = 3/4] than in the un- 
correlated one [U(S1) = U(S2) = 1/2]. 

5.4. Example 4. This example departs from the preceding framework. 

TABLE 5.1. FITNESS 

Strategy 1 Strategy 2 

Strategy 1 0 1 
Strategy 2 1 0 
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The population is finite, the dynamics are discrete and the population 
proportions are not sufficient to specify the state of the system. As Hamilton 
(1964) emphasizes, correlated interactions may take place in the absence 
of detection or signals when like individuals cluster together spatially. 
Hamilton discusses nondispersive or "viscous" populations where indi- 
viduals living together are more likely to be related. In replicator models, 
relatedness is an all or nothing affair and the effects of viscosity can be 
striking. 

For the simplest possible spatial example, consider a one-dimensional 
space. A large fixed finite number of individuals are arranged in a row. 
Each, except those on the ends, has two neighbors. Suppose that in each 
time period each individual plays a prisoner's dilemma with each of its 
neighbors and receives the average of the payoffs of these games. We 
assume that similar individuals cluster, so a group expands or contracts 
around the periphery. The population proportions will be governed by the 
discrete replicator dynamics rounded off, and the expansion or contrac- 
tion of a connected group of like individuals will be determined by the 
fitnesses of members of that group. The state of the system here depends 
not only on the population frequency but also on the spatial configuration 
of individuals playing various strategies. 

A single cooperator introduced into space otherwise populated by de- 
fectors interacts only with defectors and is eliminated. Scattered isolated 
cooperators or groups of two are also eliminated. Defection is strongly 
stable in a sense appropriate for this discrete system. However, if a col- 
ony of four contiguous cooperators is introduced in the middle of the 
space (or three at an end of the space), cooperators will have a higher 
average fitness than defectors and will increase. Cooperation, however, 
will not be fixed. The hypothetical last defector interacts only with co- 
operators and so has a fitness higher than their average fitness. Defectors 
cannot be completely eliminated. They will persist as predators on the 
periphery of the community of cooperators. Cooperation fails to be stable. 
Even though defection is the unique stable pure strategy in this example, 
many possible initial states of the system are carried to states that include 
both cooperators and defectors. 

These simple models indicate the importance of correlation in evolu- 
tionary settings and the striking differences in outcomes of which it can 
produce. A variety of other models incorporating correlation in one way 
or another, and fitting within the framework of correlated evolutionary 
game theory, can be found in the biological, economic and philosophical 
literature. Some pointers to this literature are given in section 8. 

6. Correlation in Evolutionary and in Economic Game Theory. In 
the absence of correlation, the Nash equilibrium of the rational players 
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of classical economic game theory and the equilibria of the unconscious 
adaptive processes of evolutionary game theory almost coincide. To every 
evolutionary game corresponds a two-player nonzero sum von Neumann- 
Morgenstern game. We cannot say that p is an equilibrium of the rep- 
licator dynamics for the evolutionary game iff (p,p) is a Nash equilibrium 
of the von Neumann-Morgenstern game because, as already mentioned, 
any unmixed population (pure strategy) is an equilibrium of the replicator 
dynamics.2 But we can say that if (p,p) is a Nash equilibrium of the 
corresponding two-person game, then p is an equilibrium of the replicator 
dynamics. And if p is a stable equilibrium of the replicator dynamics, 
then (p,p) is a Nash equilibrium of the two-person game. For more in- 
formation on the relation of refinements of the equilibrium concepts in 
the two settings, see Bomze (1986), Friedman (1991), Nachbar (1990) 
and van Damme (1987). On the other hand, replicator dynamics need not 
even converge to an equilibrium or a cycle. For a discussion of chaotic 
dynamics in four strategy evolutionary games see Skyrms (1992, 1993). 

In both evolutionary and economic game theory the independence as- 
sumptions of the classical theory are an unrealistic technical convenience. 
However, the introduction of correlation leads the two theories in differ- 
ent directions. In the game theory of von Neumann and Morgenstern and 
Nash, the choice of a mixed strategy is thought of as turning the choice 
of one's pure act over to some objective randomizing device. The player's 
choice is then just the choice of the probabilities of the randomizing de- 
vice, for example, the choice of the bias of a coin to flip. The random- 
izing devices of different players are assumed to be statistically indepen- 
dent. The introduction of mixed strategies has the pleasant mathematical 
consequence of making a player's space of strategies convex and assuring 
the existence of equilibria in finite games. From a strategic point of view, 
the coin flip is important because it pegs the degrees of belief of other 
players who know the mixed act chosen. If each player knows the mixed 
acts chosen by other players, uses these probabilities together with in- 
dependence to generate degrees of belief about what all the others will 
do, and if each player's mixed act maximizes (Savage) expected utility 
by these lights, then the players are at a Nash equilibrium. 

This picture may seem unduly restrictive. Why could not some com- 
monly known correlation exist between the individual players' random- 
izing devices? Players, in fact, might all benefit from using such a joint 
randomizing device. Or, to take a more radical line, if the only strategic 

2This is because mutation is not explicitly part of the replicator dynamics, and if the 
initial population is unmixed, no other strategies are around to replicate. The desirable 
step of incorporating mutation into the model leads from the simple deterministic dynamics 
discussed here to a stochastic process model. See Foster and Young (1990). The framework 
for correlation used in this paper can also be applied to stochastic replicator dynamics. 
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TABLE 6.1. 

Strategy 1 Strategy 2 

Strategy 1 5, 1 0, 0 
Strategy 2 4, 4 1, 5 

importance of the randomizing devices is to peg other players' degrees 
of belief, why not dispense with the metaphor of flipping a coin and 
define equilibrium directly at the level of belief? From this perspective, 
the assumption of independence appears even more artificial. These lines 
of thought were introduced and explored in a seminal paper by Aumann 
(1974). 

Aumann introduced the notion of a correlated equilibrium. Think of a 
joint randomizing device which sends each player a signal as to which 
pure acts to perform. This gives probabilities over each player's pure acts 
but these probabilities may be correlated. Such a device represents a joint- 
correlated strategy. Let us assume that all players know the joint prob- 
abilities generated by the device, but that when the signal goes out each 
player observes only her own signal and bases her degrees of belief about 
what the other players' pure acts will be on the probabilities conditional 
on this signal pegged by the joint randomizing device. If, under these 
assumptions, players have no regrets, that is, each player maximizes 
(Savage) expected utility, then the joint-correlated strategy is a correlated 
equilibrium. (Aumann 1987 shows how the notion can be subjectivized 
and viewed as a consequence of common knowledge of Bayesian rational- 
ity together with a common prior where Bayesian rationality is taken as 
ex post maximization of Savage expected utility.) 

Notice that the definition of a correlated equilibrium involves a weak 
ratifiability concept. If players are at a correlated equilibrium, then each 
player's act will maximize expected utility for that player after the player 
is given the information that act was selected by the joint randomizing 
device. In this sense, players only play ratifiable strategies. However, 
this ratifiability concept crucially differs from the evolutionary one. In 
Aumann's correlated equilibrium, the relevant ratifiability concept is de- 
fined relative to Savage expected utility and in the context of correlated 
evolutionary game theory, the relevant ratifiability concept is defined rel- 
ative to Jeffrey expected utility. 

Two examples illustrate what can and cannot be a correlated equilib- 
rium. Consider the two-person game in table 6.1 where row's payoffs 
are listed first and column's second. Only three uncorrelated Nash equi- 
libria of the game exist: the pure equilibria where both players play strat- 
egy 1, and where both players play strategy 2, and a mixed equilibrium 
where each player plays each strategy with equal probability. Given the 
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TABLE 6.2. 

Moritz Cooperates Moritz Defects 

Max Cooperates 0.9, 0.9 0, 1 
Max Defects 1, 0 0.6, 0.6 

assumption of independence, each pair of strategies is played with prob- 
ability 1/4, and each player has an expected payoff of 2.5. Both players 
can do better than they do under this mixed strategy if they can play a 
joint-correlated strategy. For example, they might flip a coin and both 
play strategy 1 if heads comes up, otherwise both play strategy 2. This 
is a correlated equilibrium which gives each player an expected payoff 
of 3. In an even better correlated equilibrium, the joint-correlated strategy 
chooses the strategy combinations (2,2), (1,1) and (2,1) with equal prob- 
ability. Since each player is only informed of his own pure act, he has 
no incentive to deviate. For instance, if row is informed that he does 
strategy 2, he assigns equal probabilities to column doing strategies 1 and 
2 and thus strategy 2 maximizes expected utility for him. In this corre- 
lated equilibrium, each player gets an expected payoff of 3 1/3. 

Correlated equilibrium does not help, however, with prisoner's di- 
lemma (see table 6.2). Whatever the probability distribution of the joint- 
correlated strategy, if Max is told to cooperate, cooperation will not max- 
imize expected utility for him. This is a consequence of two facts: (1) 
Defection strongly dominates cooperation. Despite whether Moritz co- 
operates or defects, Max is better off to defect; and (2) the relevant ex- 
pected utility is Savage expected utility rather than Jeffrey expected util- 
ity. The only correlated equilibrium in prisoner's dilemma is the pure 
strategy combination (Defect, Defect). However, as we saw in example 
1 of section 4, cooperation can be a strictly ratifiable and dynamically 
strongly stable strategy in correlated evolutionary game theory providing 
that the correlation of interactions is favorable enough. This example shows 
how wide the gap is between the effects of correlation in evolutionary 
game theory and in economic game theory. This is not to say that Aumann's 
sort of correlated equilibrium may not also have a part to play in evo- 
lutionary game theory, but only that the kind of correlation introduced 
by nonrandom pairing is different. 

7. Efficiency in Evolutionary Games. The example of the last section 
generalizes. The prisoner's dilemma has captured the imaginations of phi- 
losophers and political theorists because it is a simple prototype of a gen- 
eral problem. Interacting individuals who attempt to maximize their own 
payoffs may both end up worse off because of the nature of the inter- 
action. Everyone would prefer to be a cooperator in a society of coop- 
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erators to a defector in a society of defectors. Universal cooperation makes 
everyone better off than universal defection, but cooperation is neither an 
evolutionarily stable strategy of the Maynard Smith evolutionary game 
nor a Nash equilibrium of the associated two-person noncooperative game. 

Let us consider an arbitrary evolutionary game, given by a fitness ma- 
trix, and say that a strategy Si is strictly efficient if in interaction with 
itself it has a higher fitness than any other strategy Sj in self-interaction: 
Uii > Ujj. Thus if a strategy Si is strictly efficient, a population composed 
of individuals all playing Si will have greater average fitness than a pop- 
ulation of individuals all playing another strategy Sj. One version of the 
general problem of social philosophy in this setting is that the adaptive 
process of evolution may prevent the fixation of strictly efficient strate- 
gies, and indeed drive them to extinction. 

One route to efficiency in evolutionary games that has attracted wide 
interest involves the consideration of repeated games. Consider either an 
infinitely repeated series of games with discounted payoffs or equiva- 
lently an indefinitely repeated series of games with some constant prob- 
ability of one more play as one moves along the series. In an evolutionary 
setting, each encounter between two individuals is assumed to consist of 
just such a series of repeated games. This approach has become widely 
known through the work of Axelrod and Hamilton on indefinitely re- 
peated prisoner's dilemma. If the probability of one more play is high 
enough, Axelrod shows that the repeated game strategy of tit-for-tat, that 
is, initially cooperating and then doing what the other did the last time, 
is a Nash equilibrium. Fudenberg and Maskin (1986) have shown that 
efficient outcomes of one-shot games are sustainable as Nash equilibria 
of repeated games. Tit-for-tat is not, however, an evolutionarily stable 
strategy in the sense of Maynard Smith since the strategy "always co- 

operate" does as well against tit-for-tat as tit-for-tat does against itself 
and as well against itself as tit-for-tat does. The point generalizes to other 
repeated games. (See Farrell and Ware 1988. Also see Boyd and Loberbaum 
1987.) 

Two major difficulties, however, interfere with the repeated game ap- 
proach to efficiency. One is that a wide variety of repeated game strat- 
egies-some inefficient-can be sustained in this way as equilibria in 
indefinitely repeated games. The second, more serious difficulty, is that 
the assumptions of the theorem never really apply. Individuals have some 
finite upper bound to their lifetimes and certainly a finite upper bound to 
the number of repetitions of a game with a given other individual. Under 
these conditions the relevant theorems fail. Tit-for-tat, for example, is no 

longer even a Nash equilibrium. 
The discussion of this paper suggests another way to sustain effi- 
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TABLE 7.1. 

Strategy 1 Strategy 2 Strategy 3 

Strategy 1 10 20 0 
Strategy 2 20 10 0 
Strategy 3 17 17 10 

ciency-through correlation. Under the most favorable conditions of cor- 
relation, gratifying results follow immediately: 

If there is a strictly efficient strategy and conditional pairing propor- 
tions are constant at p(SilSi) = 1 for all i, then the strictly efficient 

strategy is strictly ratifiable and is globally stable in the replicator 
dynamics.3 

Things are even slightly better than stated since one will not quite need 

perfect correlation if the strategy in question is strictly efficient. 
The situation is less simple and straightforward with respect to the ef- 

ficiency of mixed or polymorphic populations. Clearly, correlation can 
enhance efficiency here in interesting ways. Consider a system with the 
fitnesses in table 7.1. If the interactions between population members are 
uncorrelated, then a population consisting of equal proportions of strategy 
1 and strategy 2 individuals has an average fitness of 15 and can be in- 
vaded by strategy 3 individuals which have an average fitness of 17. Then 
the uncorrelated replicator dynamics carry strategy 3 to fixation for an 

average fitness of 10. However, if we allow for correlated encounters, 
an anticorrelated population equally divided between strategy 1 individ- 
uals and strategy 2 individuals with p(S1 S2) = p(S2S1) = 1 is possible. 
This population has a fitness of 20, and cannot be invaded by strategy 3 
individuals no matter what their pairing proportions are. A small pertur- 
bation of the population in the direction of strategy 2 (0.5 - E strategy 
1, 0.5 + E strategy 2) does not allow enough strategy 1 players to main- 
tain perfect anticorrelation. Assuming any anticorrelation consistent with 
the population proportions, all of the strategy 1 players will interact with 

strategy 2 players, but a few of the strategy 2 players will have to interact 
with each other. This lowers the expected fitness of strategy 2 below that 

3If S is strictly efficient and the conditional pairing proportions give perfect self-correlation, 
then U(S) and U(S') are constant with U(S) > U(S') for any S' different from S throughout 
the space. Then, by definition, U(S) > U everywhere except at the point of fixation of S 
and S is strictly ratifiable. 

Considering the replicator dynamics, since both [U(S) - U] and p(S) are positive 
throughout the interior of the space, the replicator dynamics makes dp(S)/dt positive 
throughout the interior; p(S) is a global Liapounov function. It assumes its unique maxi- 
mum at the point of fixation of S and it is increasing along all orbits. It follows that the 
point of fixation of S is a globally stable attractor in the replicator dynamics. See Boyce 
and DiPrima (1977) or Hirsch and Smale (1974). 
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TABLE 7.2. 

Strategy I Strategy 2 Strategy 3 

Strategy 1 10 20 0 
Strategy 2 30 10 0 
Strategy 3 17 17 10 

of strategy 1. In like manner, an excess of strategy 1 players lowers the 
expected fitness of strategy 1 below that of strategy 2. Thus, under the 
assumption that anticorrelation is maintained consistent with the popu- 
lation proportions, this efficient polymorphic population is strongly dy- 
namically stable in the correlated replicator dynamics. 

Efficiency in polymorphic populations is, however, not always so 
straightforward. An efficient polymorphic population may fail to be in 
equilibrium in the correlated replicator dynamics, even assuming the most 
favorable correlation consistent with population proportions. Table 7.2 
modifies the foregoing example by enhancing the fitness of 52 played 
against S1. Now at a population equally divided between S1 and S2 with 
perfect anticorrelated interactions, the fitness of S2 is 30, that of S1 is 
20, and the average fitness of the population is 25. But since the fitness 
of S2 is higher than that of S1, the correlated replicator dynamics causes 
the proportion of S2 individuals to increase. This means that there are 
not enough SI individuals to pair with all S2s, so some S2s must pair 
with each other, and the expected fitness of 52 goes down, as before. 
These effects come into equilibrium in a population of 1/3 SI and 2/3 
52. This polymorphic population is strongly stable in the correlated rep- 
licator dynamics, but its average fitness is only 20 whereas at the (1/2,1/2) 
polymorphism the average fitness of the population is 25. Moreover, 
(1/2,1/2) polymorphic state Pareto dominates the (1/3,2/3) state in the 
sense that S2 individuals have higher fitness in the former, while S1 in- 
dividuals have equal fitness in both. 

In summary, correlation completely transforms the question of effi- 
ciency in evolutionary game theory. With perfect self-correlation the rep- 
licator dynamics inexorably drives a strictly efficient strategy to fixa- 
tion-even if that strategy is strongly dominated. With other types of 
correlation, efficient polymorphisms are possible which are not possible 
without correlation. However, the mere fact that correlation must be con- 
sistent with population proportions already circumscribes the situations in 
which the most favorable correlation can support efficient mixed popu- 
lations. In more realistic cases, correlation will fall short of extreme val- 
ues. (Why this is so raises the important question of the evolution of 
correlation mechanisms.) Nevertheless, the novel phenomena which stand 
out starkly in the extreme examples may also be found in more realistic 
ones. 
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8. Related Literature. A rich biological literature, largely initiated by 
the important work of Hamilton (1963, 1964, 1971) but going back at 
least to Wright (1921), deals with nonrandom interactions. Hamilton (1964) 
discusses both detection and location as factors which lead to correlated 
interactions. He already notes here that positive correlation is favorable 
to the evolution of altruism (see also Hamilton 1963). This point is re- 
stated in Axelrod (1981,1984) and Axelrod and Hamilton (1981), where 
a scenario with high probability of interaction with relatives is advanced 
as a possible way for tit-for-tat to gain a foothold in a population of "al- 
ways defect". Fagen (1980) makes the point in a one-shot rather than a 
repeated game context. Hamilton (1971) develops models of assortative 
pairing (and dissortative pairing) in analogy to Wright's assortative mat- 
ing. Eshel and Cavalli-Sforza (1982) further develop this theme with ex- 
plicit calculation of expected fitnesses using conditional pairing proba- 
bilities. Michod and Sanderson (1985) and Sober (1992) point out that 
repeated game strategies in uncorrelated evolutionary game theory may 
be thought of as correlating devices with respect to the strategies in the 
constituent one-shot games. Extensive form games other than conven- 
tional repeated games could also play the role of correlating devices. 
Feldman and Thomas (1987) and Kitcher (1993) discuss various kinds of 
modified repeated games where the choice whether to play again with 
the same partner-or more generally the probability of another repeti- 
tion-depends on the last play. The basic idea is already in Hamilton 
(1971), "Rather than continue in the jangling partnership, the disillu- 
sioned cooperator can part quietly from the selfish companion at the first 
clear sign of unfairness and try his luck in another union. The result would 
be some degree of assortative pairing" (p. 65). Gautier (1986) and 
Hirshleifer and Martinez Coll (1988) discuss perfect detection models. 
Robson (1990) considers selection of an efficient evolutionarily stable 
strategy in a repeated game context by introduction of a mutant who can 
send costless signals. This is done within the context of uncorrelated evo- 
lutionary game theory, with the signals inducing correlation in plays of 
the initial game embedded in the signaling game. The evolutionary se- 
lection of efficient equilibria in repeated games is also treated in Fudenberg 
and Maskin (1990) and Binmore and Samuelson (1992). Wilson (1980) 
discusses models where individuals interact within isolated subpopula- 
tions. Even if the subpopulations were generated by random sampling 
from the population as a whole and individuals pair at random within 
their subpopulations, the subpopulation structure can create correlation. 
The basic idea is already in Wright (1945, 417). Pollock (1989) explores 
consequences of correlation generated by Hamilton's population viscosity 
for the evolution of reciprocity where players are located on a spatial 
lattice. Myerson et al. (1991) develop a solution concept for evolutionary 
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games based on taking a limit as Hamilton's population viscosity goes to 
zero. Nowak and May (1992,1993) and Grim (1993) explore the effects 
of space in cellular automata models. 

9. Conclusion. Correlated interactions are the norm in many biological 
situations. These may be a consequence of a tendency to interact with 
relatives (Hamilton's kin selection), of identification and discrimination, 
of spatial location, or of strategies established in repeated game situations 
(the reciprocal altruism of Trivers 1971 and Axelrod and Hamilton 1981). 
The crucial step in modifying evolutionary game theory to take account 
of correlations is merely to calculate expected fitness according to The 
Logic of Decision rather than The Foundations of Statistics (Savage 1954). 

This means that strategies such as cooperation in one-shot prisoner's 
dilemma with a clone are converted to legitimate possibilities in corre- 
lated evolutionary game theory. It is not generally true that evolutionary- 
adaptive processes will lead the population to behave in accordance with 
the principles of economic game theory. The consonance of evolutionary 
and economic game theory only holds in the case of independence. When 
correlation enters, the two theories part ways. Correlated evolution can 
even lead to fixation of a strongly dominated strategy. 

Positive correlation of strategies with themselves is favorable to the 
development of cooperation and efficiency. In the limiting model of per- 
fect autocorrelation, evolutionary dynamics enforces a Darwinian version 
of Kant's categorical imperative, "Act only so that if others act likewise 
fitness is maximized". Strategies which violate this imperative are driven 
to extinction. If a unique (strictly efficient) strategy obeys it, then that 
strategy becomes fixed. In the real world, correlation is never perfect, 
but positive correlation is not uncommon. The categorical imperative is 
weakened to a tendency for the evolution of strategies which violate prin- 
ciples of individual rational choice in pursuit of the common good. 

Correlation of interactions should continue to play a part, perhaps an 
even more important part, in the theory of cultural evolution (see Boyd 
and Richerson 1985, Cavalli-Sforza and Feldman 1981, and Lumsden and 
Wilson 1981). If so, then the special characteristics of correlation in evo- 
lutionary game theory will be important for understanding the evolution 
of social institutions. Contexts which involve both social institutions and 
strategic rational choice may call for the interaction of correlated evo- 
lutionary game theory with correlated economic game theory. 
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